Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Pathobiology ; : 1-8, 2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-2296241

ABSTRACT

The incidence, presentation, and predisposing factors of post-acute sequelae of COVID-19 (PASC) are currently poorly understood. Lung explants may provide a rare insight into terminal SARS-CoV-2-associated lung damage and its pathophysiology. A 62-year-old man presented with progressively worsening respiratory symptoms after recovering from mild COVID-19 3 months earlier. No underlying pulmonary comorbidities were reported. A chest CT revealed bilateral extensive ground-glass and reticular opacities, suspicious of pulmonary fibrosis. Despite initial high-dose glucocorticoid therapy, the interstitial lung disease progressed, and after exhausting all viable therapeutic options, bilateral lung transplantation was successfully conducted. Histological analysis revealed extensive end-stage interstitial fibrosis with diffuse dendriform ossification and bronchiolar and transitional cell metaplasia. Signs of interstitial remodeling such as an increased interstitial collagen deposition, a pathological accumulation of CD163+/CD206+ M2-polarized macrophages with an increased expression of phosphorylated ERK, and an increased density of CD105+ newly formed capillaries were observed. qRT-PCR and immunohistochemistry for SARS-CoV-2 N-protein in the endothelium of medium-sized vessels confirmed a persistence of SARS-CoV-2. Our findings highlight a highly unusual presentation of SARS-CoV-2-associated lung fibrosis, implying that incomplete viral clearance in the vascular compartment may play a vital pathophysiological role in the development of PASC.

2.
Journal of psychosomatic research ; 2023.
Article in English | EuropePMC | ID: covidwho-2263525

ABSTRACT

Objective Subjective illness perception (IP) can differ from physician's clinical assessment results. Herein, we explored patient's IP during coronavirus disease 2019 (COVID-19) recovery. Methods Participants of the prospective observation CovILD study (ClinicalTrials.gov: NCT04416100) with persistent somatic symptoms or cardiopulmonary findings one year after COVID-19 were analyzed (n = 74). Explanatory variables included demographic and comorbidity, COVID-19 course and one-year follow-up data of persistent somatic symptoms, physical performance, lung function testing, chest computed tomography and trans-thoracic echocardiography. Factors affecting IP (Brief Illness Perception Questionnaire) one year after COVID-19 were identified by regularized modeling and unsupervised clustering. Results In modeling, 33% of overall IP variance (R2) was attributed to fatigue intensity, reduced physical performance and persistent somatic symptom count. Overall IP was largely independent of lung and heart findings revealed by imaging and function testing. In clustering, persistent somatic symptom count (Kruskal-Wallis test: η2 = 0.31, p < .001), fatigue (η2 = 0.34, p < .001), diminished physical performance (χ2 test, Cramer V effect size statistic: V = 0.51, p < .001), dyspnea (V = 0.37, p = .006), hair loss (V = 0.57, p < .001) and sleep problems (V = 0.36, p = .008) were strongly associated with the concern, emotional representation, complaints, disease timeline and consequences IP dimensions. Conclusion Persistent somatic symptoms rather than abnormalities in cardiopulmonary testing influence IP one year after COVID-19. Modifying IP represents a promising innovative approach to treatment of post-COVID-19 condition. Besides COVID-19 severity, individual IP should guide rehabilitation and psychological therapy decisions.

3.
J Psychosom Res ; 169: 111234, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2263526

ABSTRACT

OBJECTIVE: Subjective illness perception (IP) can differ from physician's clinical assessment results. Herein, we explored patient's IP during coronavirus disease 2019 (COVID-19) recovery. METHODS: Participants of the prospective observation CovILD study (ClinicalTrials.gov: NCT04416100) with persistent somatic symptoms or cardiopulmonary findings one year after COVID-19 were analyzed (n = 74). Explanatory variables included demographic and comorbidity, COVID-19 course and one-year follow-up data of persistent somatic symptoms, physical performance, lung function testing, chest computed tomography and trans-thoracic echocardiography. Factors affecting IP (Brief Illness Perception Questionnaire) one year after COVID-19 were identified by regularized modeling and unsupervised clustering. RESULTS: In modeling, 33% of overall IP variance (R2) was attributed to fatigue intensity, reduced physical performance and persistent somatic symptom count. Overall IP was largely independent of lung and heart findings revealed by imaging and function testing. In clustering, persistent somatic symptom count (Kruskal-Wallis test: η2 = 0.31, p < .001), fatigue (η2 = 0.34, p < .001), diminished physical performance (χ2 test, Cramer V effect size statistic: V = 0.51, p < .001), dyspnea (V = 0.37, p = .006), hair loss (V = 0.57, p < .001) and sleep problems (V = 0.36, p = .008) were strongly associated with the concern, emotional representation, complaints, disease timeline and consequences IP dimensions. CONCLUSION: Persistent somatic symptoms rather than abnormalities in cardiopulmonary testing influence IP one year after COVID-19. Modifying IP represents a promising innovative approach to treatment of post-COVID-19 condition. Besides COVID-19 severity, individual IP should guide rehabilitation and psychological therapy decisions.


Subject(s)
COVID-19 , Medically Unexplained Symptoms , Humans , Prospective Studies , Cross-Sectional Studies , Perception , Fatigue/etiology
4.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: covidwho-2279284

ABSTRACT

Background: Recovery trajectories from coronavirus disease 2019 (COVID-19) call for longitudinal investigation. We aimed to characterise the kinetics and status of clinical, cardiopulmonary and mental health recovery up to 1 year following COVID-19. Methods: Clinical evaluation, lung function testing (LFT), chest computed tomography (CT) and transthoracic echocardiography were conducted at 2, 3, 6 and 12 months after disease onset. Submaximal exercise capacity, mental health status and quality of life were assessed at 12 months. Recovery kinetics and patterns were investigated by mixed-effect logistic modelling, correlation and clustering analyses. Risk of persistent symptoms and cardiopulmonary abnormalities at the 1-year follow-up were modelled by logistic regression. Findings: Out of 145 CovILD study participants, 108 (74.5%) completed the 1-year follow-up (median age 56.5 years; 59.3% male; 24% intensive care unit patients). Comorbidities were present in 75% (n=81). Key outcome measures plateaued after 180 days. At 12 months, persistent symptoms were found in 65% of participants; 33% suffered from LFT impairment; 51% showed CT abnormalities; and 63% had low-grade diastolic dysfunction. Main risk factors for cardiopulmonary impairment included pro-inflammatory and immunological biomarkers at early visits. In addition, we deciphered three recovery clusters separating almost complete recovery from patients with post-acute inflammatory profile and an enrichment in cardiopulmonary residuals from a female-dominated post-COVID-19 syndrome with reduced mental health status. Conclusion: 1 year after COVID-19, the burden of persistent symptoms, impaired lung function, radiological abnormalities remains high in our study population. Yet, three recovery trajectories are emerging, ranging from almost complete recovery to post-COVID-19 syndrome with impaired mental health.

5.
Sci Rep ; 13(1): 2599, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2245378

ABSTRACT

The severity of coronavirus disease 2019 (COVID-19) is related to the presence of comorbidities including metabolic diseases. We herein present data from the longitudinal prospective CovILD trial, and investigate the recovery from COVID-19 in individuals with dysglycemia and dyslipidemia. A total of 145 COVID-19 patients were prospectively followed and a comprehensive clinical, laboratory and imaging assessment was performed at 60, 100, 180, and 360 days after the onset of COVID-19. The severity of acute COVID-19 and outcome at early post-acute follow-up were significantly related to the presence of dysglycemia and dyslipidemia. Still, at long-term follow-up, metabolic disorders were not associated with an adverse pulmonary outcome, as reflected by a good recovery of structural lung abnormalities in both, patients with and without metabolic diseases. To conclude, dyslipidemia and dysglycemia are associated with a more severe course of acute COVID-19 as well as delayed early recovery but do not impair long-term pulmonary recovery.


Subject(s)
COVID-19 , Dyslipidemias , Metabolic Diseases , Humans , COVID-19/complications , Prospective Studies , SARS-CoV-2 , Lung/diagnostic imaging , Metabolic Diseases/complications , Dyslipidemias/complications
6.
Metabolites ; 12(6)2022 Jun 14.
Article in English | MEDLINE | ID: covidwho-1903386

ABSTRACT

Coronavirus disease 2019 (COVID-19) is frequently associated with iron dyshomeostasis. The latter is related to acute disease severity and COVID-19 convalescence. We herein describe iron dyshomeostasis at COVID-19 follow-up and its association with long-term pulmonary and symptomatic recovery. The prospective, multicentre, observational cohort study "Development of Interstitial Lung Disease (ILD) in Patients With Severe SARS-CoV-2 Infection (CovILD)" encompasses serial extensive clinical, laboratory, functional and imaging evaluations at 60, 100, 180 and 360 days after COVID-19 onset. We included 108 individuals with mild-to-critical acute COVID-19, whereas 75% presented with severe acute disease. At 60 days post-COVID-19 follow-up, hyperferritinaemia (35% of patients), iron deficiency (24% of the cohort) and anaemia (9% of the patients) were frequently found. Anaemia of inflammation (AI) was the predominant feature at early post-acute follow-up, whereas the anaemia phenotype shifted towards iron deficiency anaemia (IDA) and combinations of IDA and AI until the 360 days follow-up. The prevalence of anaemia significantly decreased over time, but iron dyshomeostasis remained a frequent finding throughout the study. Neither iron dyshomeostasis nor anaemia were related to persisting structural lung impairment, but both were associated with impaired stress resilience at long-term COVID-19 follow-up. To conclude, iron dyshomeostasis and anaemia are frequent findings after COVID-19 and may contribute to its long-term symptomatic outcome.

7.
Radiology ; 304(2): 462-470, 2022 08.
Article in English | MEDLINE | ID: covidwho-1765163

ABSTRACT

Background The long-term pulmonary sequelae of COVID-19 is not well known. Purpose To characterize patterns and rates of improvement of chest CT abnormalities 1 year after COVID-19 pneumonia. Materials and Methods This was a secondary analysis of a prospective, multicenter observational cohort study conducted from April 29 to August 12, 2020, to assess pulmonary abnormalities at chest CT approximately 2, 3, and 6 months and 1 year after onset of COVID-19 symptoms. Pulmonary findings were graded for each lung lobe using a qualitative CT severity score (CTSS) ranging from 0 (normal) to 25 (all lobes involved). The association of demographic and clinical factors with CT abnormalities after 1 year was assessed with logistic regression. The rate of change of the CTSS at follow-up CT was investigated by using the Friedmann test. Results Of 142 enrolled participants, 91 underwent a 1-year follow-up CT examination and were included in the analysis (mean age, 59 years ± 13 [SD]; 35 women [38%]). In 49 of 91 (54%) participants, CT abnormalities were observed: 31 of 91 (34%) participants showed subtle subpleural reticulation, ground-glass opacities, or both, and 18 of 91 (20%) participants had extensive ground-glass opacities, reticulations, bronchial dilation, microcystic changes, or a combination thereof. At multivariable analysis, age of more than 60 years (odds ratio [OR], 5.8; 95% CI: 1.7, 24; P = .009), critical COVID-19 severity (OR, 29; 95% CI: 4.8, 280; P < .001), and male sex (OR, 8.9; 95% CI: 2.6, 36; P < .001) were associated with persistent CT abnormalities at 1-year follow-up. Reduction of CTSS was observed in participants at subsequent follow-up CT (P < .001); during the study period, 49% (69 of 142) of participants had complete resolution of CT abnormalities. Thirty-one of 49 (63%) participants with CT abnormalities showed no further improvement after 6 months. Conclusion Long-term CT abnormalities were common 1 year after COVID-19 pneumonia. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Leung in this issue.


Subject(s)
COVID-19 , Lung Injury , COVID-19/diagnostic imaging , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
8.
Sci Rep ; 12(1): 3677, 2022 03 07.
Article in English | MEDLINE | ID: covidwho-1730313

ABSTRACT

The CovILD study is a prospective, multicenter, observational cohort study to systematically follow up patients after coronavirus disease-2019 (COVID-19). We extensively evaluated 145 COVID-19 patients at 3 follow-up visits scheduled for 60, 100, and 180 days after initial confirmed diagnosis based on typical symptoms and a positive reverse transcription-polymerase chain reaction (RT-PCR) for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We employed comprehensive pulmonary function and laboratory tests, including serum concentrations of IgG against the viral spike (S) glycoprotein, and compared the results to clinical data and chest computed tomography (CT). We found that at the 60 day follow-up, 131 of 145 (90.3%) participants displayed S-specific serum IgG levels above the cut-off threshold. Notably, the highly elevated IgG levels against S glycoprotein positively correlated with biomarkers of immune activation and negatively correlated with pulmonary function and the extent of pulmonary CT abnormalities. Based on the association between serum S glycoprotein-specific IgG and clinical outcome, we generated an S-specific IgG-based recovery score that, when applied in the early convalescent phase, accurately predicted delayed pulmonary recovery after COVID-19. Therefore, we propose that S-specific IgG levels serve as a useful immunological surrogate marker for identifying at-risk individuals with persistent pulmonary injury who may require intensive follow-up care after COVID-19.


Subject(s)
COVID-19/immunology , Immunoglobulin G/immunology , Lung/pathology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/pathology , Female , Humans , Male , Middle Aged , Patient Acuity , Prospective Studies , Respiratory Function Tests , Reverse Transcriptase Polymerase Chain Reaction
9.
Elife ; 112022 02 08.
Article in English | MEDLINE | ID: covidwho-1675184

ABSTRACT

Background: The optimal procedures to prevent, identify, monitor, and treat long-term pulmonary sequelae of COVID-19 are elusive. Here, we characterized the kinetics of respiratory and symptom recovery following COVID-19. Methods: We conducted a longitudinal, multicenter observational study in ambulatory and hospitalized COVID-19 patients recruited in early 2020 (n = 145). Pulmonary computed tomography (CT) and lung function (LF) readouts, symptom prevalence, and clinical and laboratory parameters were collected during acute COVID-19 and at 60, 100, and 180 days follow-up visits. Recovery kinetics and risk factors were investigated by logistic regression. Classification of clinical features and participants was accomplished by unsupervised and semi-supervised multiparameter clustering and machine learning. Results: At the 6-month follow-up, 49% of participants reported persistent symptoms. The frequency of structural lung CT abnormalities ranged from 18% in the mild outpatient cases to 76% in the intensive care unit (ICU) convalescents. Prevalence of impaired LF ranged from 14% in the mild outpatient cases to 50% in the ICU survivors. Incomplete radiological lung recovery was associated with increased anti-S1/S2 antibody titer, IL-6, and CRP levels at the early follow-up. We demonstrated that the risk of perturbed pulmonary recovery could be robustly estimated at early follow-up by clustering and machine learning classifiers employing solely non-CT and non-LF parameters. Conclusions: The severity of acute COVID-19 and protracted systemic inflammation is strongly linked to persistent structural and functional lung abnormality. Automated screening of multiparameter health record data may assist in the prediction of incomplete pulmonary recovery and optimize COVID-19 follow-up management. Funding: The State of Tyrol (GZ 71934), Boehringer Ingelheim/Investigator initiated study (IIS 1199-0424). Clinical trial number: ClinicalTrials.gov: NCT04416100.


Subject(s)
COVID-19/therapy , Lung Diseases/epidemiology , Lung Diseases/physiopathology , Adult , Aged , COVID-19/epidemiology , COVID-19/rehabilitation , Female , Follow-Up Studies , Humans , Intensive Care Units , Logistic Models , Longitudinal Studies , Lung Diseases/diagnosis , Male , Middle Aged , Phenotype , Prospective Studies , Risk Factors , SARS-CoV-2 , Tomography, X-Ray Computed/methods
10.
J Cardiovasc Dev Dis ; 8(11)2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1488622

ABSTRACT

(1) Background: The athlete's heart may develop permanent vessel enlargement. The purpose of our study was to define normal values for coronary artery dimensions of endurance athletes by coronary computed tomography angiography (CTA). (2) Methods: Ninety-eight individuals (56.2 ± 11 years) were included into this retrospective matched case-controlled-study. Endurance athletes had regular training volumes of ≥1 h per unit, ≥3-7 times per week (either cycling, running or mountain-endurance). Athletes were matched for age and gender with sedentary controls using propensity score. Quantitative CTA analysis included coronary vessel dimensions (two diameters and area) of the LM, LAD, CX and RCA for all AHA-16-segments. (3) Results: Proximal LAD area and diameter (p = 0.019); proximal/mid CX (diameter and area; p = 0.026 and p = 0.018/p = 0.008 and p = 0.009); mid RCA diameter and area; and proximal RCA diameter were significantly larger in endurance athletes (p < 0.05). The left main area (p = 0.708) and diameter (p = 0.809) as well as the mid LAD and distal segments were not different. We present the histograms and data for normal values ±1 and ± 2 SD. (4) Conclusions: Endurance athletes have larger proximal LAD, proximal/mid CX and RCA vessel dimensions, while LM and distal segments are similar. Hence, dilated coronary arteries in endurance athletes ("Athlete's arteries") have to be distinguished from diffuse ectatic segments developing during Kawasaki disease or multisystemic inflammation syndrome after COVID-19.

11.
Infection ; 50(1): 263-267, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1372830

ABSTRACT

BACKGROUND: There are substantial concerns about fibrotic and vascular pulmonary sequelae after coronavirus disease 2019 (COVID-19) associated acute respiratory distress syndrome (ARDS).AQ1 Histopathology reports of lung biopsies from COVID-19 survivors are scarce. CASE: We herein report results of functional and histopathological studies in a 70 year-old man undergoing a co-incidental tumor lobectomy six months after long-term mechanical ventilation for COVID-19 pneumonia. CONCLUSION: Despite several unfavorable risk factors, this case presentation shows a completed pulmonary recovery process within a few months.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Aged , Humans , Lung , Male , Respiration, Artificial , SARS-CoV-2
13.
NPJ Digit Med ; 4(1): 69, 2021 Apr 12.
Article in English | MEDLINE | ID: covidwho-1180281

ABSTRACT

The COVID-19 pandemic has worldwide individual and socioeconomic consequences. Chest computed tomography has been found to support diagnostics and disease monitoring. A standardized approach to generate, collect, analyze, and share clinical and imaging information in the highest quality possible is urgently needed. We developed systematic, computer-assisted and context-guided electronic data capture on the FDA-approved mint LesionTM software platform to enable cloud-based data collection and real-time analysis. The acquisition and annotation include radiological findings and radiomics performed directly on primary imaging data together with information from the patient history and clinical data. As proof of concept, anonymized data of 283 patients with either suspected or confirmed SARS-CoV-2 infection from eight European medical centers were aggregated in data analysis dashboards. Aggregated data were compared to key findings of landmark research literature. This concept has been chosen for use in the national COVID-19 response of the radiological departments of all university hospitals in Germany.

14.
Respir Res ; 21(1): 276, 2020 Oct 21.
Article in English | MEDLINE | ID: covidwho-883579

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is frequently associated with hyperinflammation and hyperferritinemia. The latter is related to increased mortality in COVID-19. Still, it is not clear if iron dysmetabolism is mechanistically linked to COVID-19 pathobiology. METHODS: We herein present data from the ongoing prospective, multicentre, observational CovILD cohort study (ClinicalTrials.gov number, NCT04416100), which systematically follows up patients after COVID-19. 109 participants were evaluated 60 days after onset of first COVID-19 symptoms including clinical examination, chest computed tomography and laboratory testing. RESULTS: We investigated subjects with mild to critical COVID-19, of which the majority received hospital treatment. 60 days after disease onset, 30% of subjects still presented with iron deficiency and 9% had anemia, mostly categorized as anemia of inflammation. Anemic patients had increased levels of inflammation markers such as interleukin-6 and C-reactive protein and survived a more severe course of COVID-19. Hyperferritinemia was still present in 38% of all individuals and was more frequent in subjects with preceding severe or critical COVID-19. Analysis of the mRNA expression of peripheral blood mononuclear cells demonstrated a correlation of increased ferritin and cytokine mRNA expression in these patients. Finally, persisting hyperferritinemia was significantly associated with severe lung pathologies in computed tomography scans and a decreased performance status as compared to patients without hyperferritinemia. DISCUSSION: Alterations of iron homeostasis can persist for at least two months after the onset of COVID-19 and are closely associated with non-resolving lung pathologies and impaired physical performance. Determination of serum iron parameters may thus be a easy to access measure to monitor the resolution of COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov number: NCT04416100.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/metabolism , Homeostasis , Iron/metabolism , Lung Diseases/etiology , Lung Diseases/metabolism , Pneumonia, Viral/complications , Pneumonia, Viral/metabolism , Adult , Aged , Anemia/etiology , C-Reactive Protein/analysis , COVID-19 , Cohort Studies , Coronavirus Infections/physiopathology , Female , Ferritins/blood , Follow-Up Studies , Humans , Inflammation/etiology , Inflammation/metabolism , Interleukin-6/blood , Lung Diseases/physiopathology , Male , Middle Aged , Monocytes/metabolism , Pandemics , Pneumonia, Viral/physiopathology , Prospective Studies , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL